Utilization of mushroom for the bioremediation of plastics and polythenes

Authors

  • Odufa Patience Ikhimalo Department of Biological Sciences, Plant Biology and Biotechnology Unit, Edo State University, Uzairue, Edo State, Nigeria.
  • Anthony Moses Ugbenyen Department of Biochemistry, Edo State University, Uzairue, Edo State, Nigeria.

DOI:

https://doi.org/10.52679/syncytia.2023.0bt5hn

Keywords:

Bioremediation, Fungi, Mushroom, Plastic, Polyethenes

Abstract

Plastics found important usage across all industries and are mostly produced from fossil sources, however, the additive used in the plastic production process makes these plastics non-hydrolyzable and deters the formation of biofilms which are important for microbial colonization and subsequent degradation. The use of living organisms, specifically fungi, in the degradation of waste is known as mycoremediation. This has been applied to different waste categories, including lignocellulose, petrochemical, and wastewater with successes recorded. Plastic waste is ubiquitous and is a challenge to waste management due to its durability and recalcitrant nature; the remediation process of plastic waste produces by-products that could be destructive to humans and the environment. Mushrooms which have been consumed since time immemorial for their medicinal and pharmacology properties have been widely used in the mycoremediation process due to their rapid growth, biomass production, and extracellular enzymes. The enzyme system of mushrooms and those found in spent mushroom compost have degradational prowess which has shown the ability to digest plastic polymers. Mushrooms such as Pleurotus ostreatus, Agaricus bisporus, Auricularia auricular, and Pestalotiopsis microspore amongst several others have prospects in the mycoremediation of plastics and polythenes. Fourier Transform Infrared (FTIR) spectrophotometry confirms biodegradation breakage of chemical bonds in the plastic by revealing bands for oxidative products like esters, aldehydes, and carboxylic for mushroom-treated polythene films, nylons, and polythenes. Mycoremediation of plastic waste is purported to be sustainable in the large-scale degradation of plastic waste and should be exploited.

References

Adenipekun, C. O., Ayanleye, O. O., & Oyetunji, O. J. (2013). Bioremediation of soil contaminated by spent diesel oil using Pleurotus pulmonarius Fries (Quelet) and its effects on the growth of Corchorus olitorius (L). Journal of Applied Biosciences, 68, 5366.

Ali, A., Guo, D., Mahar, A., Wang, P., Shen, F., Li, R., & Zhang, Z. (2017). Mycoremediation of potentially toxic trace elements—a biological tool for soil cleanup: a review. Pedosphere, 27(2), 205–222.

Ali, J., Ali, M., Khan, I., Khan, A., Rafique, Z., & Waseem, H. (2022). Advances in biodegradation and bioremediation of emerging contaminants in the environment. In Kumar, S., & Hashmi, M. Z. (Eds) Biological Approaches to Controlling Pollutants: A Volume in Advances in Pollution Research; Woodhead Publishing, Elsevier Inc., 121–138.

Ali, M. I., Ahmed, S., Javed, I., Ali, N., Atiq, N., Hameed, A., & Robson, G. (2014). Biodegradation of starch blended polyvinyl chloride films by isolated Phanerochaete chrysosporium PV1. International Journal of Environmental Science and Technology, 11(2), 339–348.

Beaumont, N. J., Aanesen, M., Austen, M. C., Börger, T., Clark, J. R., Cole, M., et al. (2019). Global ecological, social and economic impacts of marine plastic. Marine Pollution Bulletin, 142, 189–195.

Bernardes, M. F. F., Pazin, M., Pereira, L. C., & Dorta, D. J. (2015). Impact of pesticides on environmental and human health. In Andreazza, A. C., & Scola, G. (Eds) Toxicology Studies: Cells, Drugs and Environment, Intech.

Branà, M. T., Cimmarusti, M. T., Haidukowski, M., Logrieco, A. F., & Altomare, C. (2017). Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii). PLoS One, 12(8), e0182574.

Brunner, I., Fischer, M., Rüthi, J., Stierli, B., & Frey, B. (2018). Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS One, 13(8), e0202047.

Caruso, G. (2015). Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments. Journal of Pollution Effects & Control, 03(03), e112.

Catto, A. L., Rosseto, E. S., Reck, M. A., Rossini, K., da Silveira, R. M. B., & Santana, R. M. C. (2014). Growth of white rot fungi in composites produced from urban plastic waste and wood. Macromolecular Symposia, 344(1), 33–38.

Chang, B. V., Fan, S. N., Tsai, Y. C., Chung, Y. L., Tu, P. X., & Yang, C. W. (2018). Removal of emerging contaminants using spent mushroom compost. Science of The Total Environment, 634, 922–933.

Chonde, S. G., Chonde, S. G., Bhosale, P. R., & Raut, P. D. (2012). Studies on degradation of synthetic polymer nylon 6 by lignolytic fungus Phanerochaete chrysosporium NCIM 1073. Journal of Environmental Research and Development, 6(3A), 709-714.

Chopra, S. V., & Sharma, A. (2019). Environmental contaminants: sources and effects. Evaluation of Environmental Contaminants and Natural Products: A Human Health Perspective, 1–23.

Cortes-Tolalpa, L., Salles, J. F., & van Elsas, J. D. (2017). Bacterial synergism in lignocellulose biomass degradation – complementary roles of degraders as influenced by complexity of the carbon source. Frontiers in Microbiology, 8.

Cregut, M., Bedas, M., Durand, M. J., & Thouand, G. (2013). New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnology Advances, 31(8), 1634–1647.

Critchell, K., & Hoogenboom, M. O. (2018). Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus). PLoS One, 13(3), e0193308.

D’Surney, S. J., & Smith, M. D. (2005). Chemicals of environmental concern. In Wexler, P. (Ed) Encyclopedia of Toxicology, Elsevier Inc., 526–530.

da Luz, J. M. R., Paes, S. A., Bazzolli, D. M. S., Tótola, M. R., Demuner, A. J., & Kasuya, M. C. M. (2014). Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus. PLoS One, 9(11), e107438.

da Luz, J. M. R., Paes, S. A., Nunes, M. D., da Silva, M. de C. S., & Kasuya, M. C. M. (2013). Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One, 8(8), e69386.

da Luz, J. M. R., Paes, S. A., Ribeiro, K. V. G., Mendes, I. R., & Kasuya, M. C. M. (2015). Degradation of green polyethylene by Pleurotus ostreatus. PLoS One, 10(6), e0126047.

de Jesus Menk, J., do Nascimento, A. I. S., Leite, F. G., de Oliveira, R. A., Jozala, A. F., de Oliveira Junior, J. M., et al. (2019). Biosorption of pharmaceutical products by mushroom stem waste. Chemosphere, 237, 124515.

Dey, S., Bano, F., & Malik, A. (2019). Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory. In Prasad, M. N. V., Vithanage, M., & Kapley, A., Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, Butterworth-Heinemann, Elsevier Inc., 1–26.

Dorr, A. (2017). Mycoremediation handbook: a grassroots guide to cultivating mushrooms and cleaning up toxic waste with fungi. Internet Archive.

Espinosa-Valdemar, R. M., Turpin-Marion, S., Delfín-Alcalá, I., & Vázquez-Morillas, A. (2011). Disposable diapers biodegradation by the fungus Pleurotus ostreatus. Waste Management, 31(8), 1683–1688.

Falandysz, J. (2015). Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator and mycoremediator of polluted soils? Environmental Science and Pollution Research, 23(8), 7444–7451.

Falandysz, J. (2017). Mercury accumulation of three Lactarius mushroom species. Food Chemistry, 214, 96–101.

Feeney, M. J., Miller, A. M., & Roupas, P. (2014). Mushrooms—biologically distinct and nutritionally unique. Nutrition Today, 49(6), 301–307.

Fuller, R., Landrigan, P. J., Balakrishnan, K., Bathan, G., Bose-O'Reilly, S., Brauer, M., et al. (2022). Pollution and health: a progress update. The Lancet. Planetary health, 6(6), e535–e547.

Girma, W., & Tasisa, T. (2018). Application of mushroom as food and medicine. Advances in Biotechnology & Microbiology, 11(4), 555817.

Gomiero, A., Strafella, P., & Fabi, G. (2019). From macroplastic to microplastic litter: occurrence, composition, source identification and interaction with aquatic organisms. Experiences from the Adriatic Sea. In Gomiero, A. (Ed). Plastics in the Environment, IntechOpen.

Gouma, S., Fragoeiro, S., Bastos, A. C., & Magan, N. (2014). Bacterial and fungal bioremediation strategies. In Das, S. (Ed). Microbial Biodegradation and Bioremediation, Elsevier, 301–323.

Hazra, A., Mondal, A., Paul, S., Bej, S., Mondal, U., Nag, S., & Banerjee, P. (2022). Chemosensing technology for rapid detection of emerging contaminants. In Sarma, H., Dominguez, D. C., & Lee, W.-Y. (Eds). Emerging Contaminants in the Environment, Elsevier, 407–464.

Hossen, M. S., Billah Prince, M. M., Tanvir, E. M., Chowdhury, M. A. Z., Rahman, M. A., et al. (2018). Ganoderma lucidum and Auricularia polytricha mushrooms protect against carbofuran-induced toxicity in rats. Evidence-Based Complementary and Alternative Medicine, 2018, 6254929.

Julian, A. V., Reyes, R. G., & Eguchi, F. (2019). Agro-industrial waste conversion into medicinal mushroom cultivation. Encyclopedia of Environmental Health (Second Edition), Elsevier, 13–20.

Kadian, N., Gupta, A., Satya, S., Mehta, R. K., & Malik, A. (2008). Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresource Technology, 99(11), 4642–4647.

Kakon, A., Choudhury, M. B. K., & Saha, S. (2012). Mushroom is an ideal food supplement. Journal of Dhaka National Medical College & Hospital, 18(1), 58–62.

Khan, S., Nadir, S., Shah, Z. U., Shah, A. A., Karunarathna, S. C., Xu, J., et al. (2017). Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution, 225, 469–480.

Kortei, N. K., Odamtten, G. T., Obodai, M., Wiafe-Kwagyan, M., & Prempeh, J. (2018). Survey of mushroom consumption and the possible use of gamma irradiation for sterilization of compost for its cultivation in Southern Ghana. Agriculture & Food Security, 7(1), 83.

Kowalska, A., Walkiewicz, K., Kozieł, P., & Muc-Wierzgoń, M. (2017). Aflatoxins: characteristics and impact on human health. Postępy Higieny i Medycyny Doświadczalnej, 71(0), 315–327.

Kulshreshtha, S., Mathur, N. & Bhatnagar, P. (2014). Mushroom as a product and their role in mycoremediation. AMB Express, 4, 29.

Kumar, A. A., Karthick, K. & Arumugam, K. P. (2011). Properties of biodegradable polymers and degradation for sustainable development. International Journal of Chemical Engineering and Applications, 2(3), 164–167.

Liu, X., Ge, W., Zhang, X., Chai, C., Wu, J., Xiang, D., & Chen, X. (2019). Biodegradation of aged polycyclic aromatic hydrocarbons in agricultural soil by Paracoccus sp. LXC combined with humic acid and spent mushroom substrate. Journal of Hazardous Materials, 379, 120820.

Matute, R. G., Figlas, D., Mockel, G., & Curvetto, N. (2012). Degradation of metsulfuron methyl by Agaricus blazeimurrill spent compost enzymes. Bioremediation Journal, 16(1), 31–37.

Mohammadi-Sichani, M. M., Assadi, M. M., Farazmand, A., Kianirad, M., Ahadi, A. M., & Ghahderijani, H. H. (2017). Bioremediation of soil contaminated crude oil by Agaricomycetes. Journal of Environmental Health Science and Engineering, 15(1).

Nakajima, V. M., de Freitas Soares, F. E., & de Queiroz, J. H. (2018). Screening and decolorizing potential of enzymes from spent mushroom composts of six different mushrooms. Biocatalysis and Agricultural Biotechnology, 13, 58–61.

Njoki, L. M., Okoth, S. A., & Wachira, P. M. (2017). Effects of medicinal plant extracts and photosensitization on aflatoxin producing Aspergillus flavus (Raper and Fennell). International Journal of Microbiology, 2017, 5273893.

Nwogu, N. (2012). Capability of selected mushrooms to biodegrade polyethylene. Mycosphere, 3(4), 455–462.

Ouvrard, S., Leglize, P., & Morel, J. L. (2013). PAH phytoremediation: rhizodegradation or rhizoattenuation? International Journal of Phytoremediation, 16(1), 46–61.

Özkara, A., Akyil, D., & Konuk, M. (2016). Pesticides, environmental pollution, and health. In Larramendy, M. L., & Sononeski, S. (Eds), Environmental Health Risk, IntechOpen.

Pathak, V. M., & Navneet. (2017). Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing, 4(1).

Petre, M., Pătrulescu, F., & Teodorescu, R. I. (2016). Controlled cultivation of mushrooms on winery and vineyard wastes. In Petre, M. (Ed), Mushroom Biotechnology: Developments and Applications, Academic Press, Elsevier Inc., 31–47.

Purnomo, A. S., Mori, T., Kamei, I., Nishii, T., & Kondo, R. (2010). Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. International Biodeterioration & Biodegradation, 64(5), 397–402.

Qureshi, M. S., Oasmaa, A., Pihkola, H., Deviatkin, I., Tenhunen, A., Mannila, J., Minkkinen, H., Pohjakallio, M., & Laine-Ylijoki, J. (2020). Pyrolysis of plastic waste: opportunities and challenges. Journal of Analytical and Applied Pyrolysis, 152, 104804.

Rhodes, C. J. (2014). Mycoremediation (bioremediation with fungi) – growing mushrooms to clean the earth. Chemical Speciation & Bioavailability, 26(3), 196–198.

Rosenfeld, P. E., & Feng, L. G. H. (2011). Emerging contaminants. In Rosenfeld, P. E., & Feng, L. G. H. (Eds), Risks of Hazardous Wastes, Willian Andrew, Elsevier Inc., 215–222.

Russell, J. R., Huang, J., Anand, P., Kucera, K., Sandoval, A. G., et al. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Applied and Environmental Microbiology, 77(17), 6076–6084.

Sharma, A. (2017). Hazardous effects of petrochemical industries: a review. Recent Advances in Petrochemical Science, 3(2).

Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326.

Singh, R. (2017). A review on different benefits of mushroom. IOSR Journal of Pharmacy and Biological Sciences, 12(1), 107–111.

Siracusa, V. (2019). Microbial degradation of synthetic biopolymers waste. Polymers, 11(6), 1066. [DOI] [PMID]

tSaoir, S., & Mansfield, J. (1998). The potential for spent mushroom compost as a mulch for weed control in Bramley orchards. Acta Horticulturae, (525), 427–430.

Tsegaye, B., Balomajumder, C., & Roy, P. (2019). Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect. Bulletin of the National Research Centre, 43, 51.

Valverde, M. E., Hernández-Pérez, T., & Paredes-López, O. (2015). Edible mushrooms: improving human health and promoting quality life. International Journal of Microbiology, 2015, 1–14.

Wang, Y., Zhang, B., Chen, N., Wang, C., Feng, S., & Xu, H. (2017). Combined bioremediation of soil co-contaminated with cadmium and endosulfan by Pleurotus eryngii and Coprinus comatus. Journal of Soils and Sediments, 18, 2136–2147.

Wiafe-Kwagyan, M., & Odamtten, G. T. (2018). Use of Pleurotus eous strain P-31 spent mushroom compost (SMC) as soil conditioner on the growth and yield performance of Capsicum annuum L. and Solanum lycopersicon L. seedlings under greenhouse conditions in Ghana. Tropical Life Sciences Research, 29(1), 173–194.

Yang, C.-W., Chen, W.-Z., & Chang, B.-V. (2017). Biodegradation of tetrabromobisphenol-A in sludge with spent mushroom compost. International Biodeterioration & Biodegradation, 119, 387–395.

Downloads

Published

30-06-2023

How to Cite

Ikhimalo, O. P., & Ugbenyen, A. M. (2023). Utilization of mushroom for the bioremediation of plastics and polythenes. Syncytia, 1(1), 16–26. https://doi.org/10.52679/syncytia.2023.0bt5hn